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Multi-voxel pattern analysis (MVPA) has led to major changes in how fMRI data are analyzed and interpreted.
Many studies now report both MVPA results and results from standard univariate voxel-wise analysis, often
with the goal of drawing different conclusions from each. Because MVPA results can be sensitive to latent
multidimensional representations and processes whereas univariate voxel-wise analysis cannot, one conclusion
that is often drawn when MVPA and univariate results differ is that the activation patterns underlying MVPA
results contain a multidimensional code. In the current study, we conducted simulations to formally test this
assumption. Our findings reveal that MVPA tests are sensitive to the magnitude of voxel-level variability in the
effect of a condition within subjects, even when the same linear relationship is coded in all voxels. We also
find that MVPA is insensitive to subject-level variability in mean activation across an ROI, which is the primary
variance component of interest in many standard univariate tests. Together, these results illustrate that
differences between MVPA and univariate tests do not afford conclusions about the nature or dimensionality
of the neural code. Instead, targeted tests of the informational content and/or dimensionality of activation
patterns are critical for drawing strong conclusions about the representational codes that are indicated by
significant MVPA results.

© 2014 Elsevier Inc. All rights reserved.

Introduction

The advent of multivoxel pattern analysis (MVPA) has led to

and Tong, 2005; Norman et al., 2006). Because MVPA makes use of
patterns of activation across voxels, MVPA is able to detect a broader
class of task-related effects than voxel-wise analysis. Oftentimes,

dramatic changes in how fMRI data are analyzed and interpreted. The
majority of past and current fMRI analyses have employed voxel-wise
analysis to identify how experimental variables affect the overall
engagement of individual voxels or mean engagement across a region
of interest (ROI; Friston et al.,, 1994; Poldrack et al.,, 2011). Contrastingly,
MVPA allows researchers to test how distributed patterns of BOLD
activation across multiple voxels relate to experimental variables (Cox
and Savoy, 2003; Haxby et al., 2001; Haynes and Rees, 2006; Kamitani
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however, researchers are not only interested in harnessing MVPA's
enhanced ability to detect task-related effects but also interested in
using differences between univariate and MVPA results to draw
conclusions about how task-related effects are coded in the brain
(Coutanche, 2013; Jimura and Poldrack, 2012).

It is well known that voxel-wise analysis and MVPA can differ in
their sensitivity to psychological or physical dimensions underlying
task processing (Coutanche, 2013; Davis and Poldrack, 2013a; Drucker
and Aguirre, 2009; Jimura and Poldrack, 2012). Univariate voxel-wise
analysis relates psychological or physical dimensions to the activation
of single voxels (see Fig. 1A), and thus can fail to map the neural basis
of experimental variables and conditions when these variables have a
distributed multidimensional effect on activation. Here we use the
term distributed multidimensional effect to refer to contexts in which
different voxels within a region carry non-identical information about


http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2014.04.037&domain=pdf
http://dx.doi.org/10.1016/j.neuroimage.2014.04.037
mailto:tyler.h.davis@ttu.edu
mailto:klarocqu@stanford.edu
http://dx.doi.org/10.1016/j.neuroimage.2014.04.037
http://www.sciencedirect.com/science/journal/10538119

X

T. Davis et al. / Neurolmage 97 (2014) 271-283

Size Predacity Scariness

272
A) Activation
Dog T 4
o Wolverine | B 3
©
iE Elephant ~CCECTT] 10
Genet [ | 1
12345
Voxels
B) Activation  Activation
(Training Set) (Test Item)
Dog T
o Wolverine | WE ?
© .
‘T Elephant ~ EIEET]
et
Genet T
1234 5
Voxels

4

9

2

Similarity Function

3
5 Bs\zei Bsnzes
predt preds
5 i scarit scaris
3
Voxels

Test Measure

sim(Dog,?)
sim(Wolverine,?)

sim(Elephant,?) argmax(sim) = ?

sim(Genet,?)

(Latent Representational Space)

Fig. 1. (A). A graphical depiction of how the neural response to different stimulus dimensions is measured via univariate voxel-wise analysis. The most common practice for testing
whether the dimensions Size, Predacity, and Scariness are coded in the brain using voxel-wise analysis is to test whether the beta weights for the three dimensions are significantly
different from zero in individual voxels or across an ROL (B). A graphical depiction of one way in which MVPA may be used to examine whether a region of the brain codes for differences
between the mammals. Activation patterns for test items are compared to those for a number of items using a similarity function. Here, the new pattern is classified as the mammal with
highest similarity and the accuracy of this prediction is assessed. Accurate classification indicates that the activation patterns contain information about the differences between these
mammals in some latent neural representational space. The question we address in the present paper is whether any conclusions can be reached about the content or dimensionality

of this latent space using prediction accuracy or other basic similarity tests alone.

psychological variables or experimental conditions (e.g., Diedrichsen
etal., 2013; Naselaris et al., 2011). Multidimensional effects contrast
with unidimensional effects in which each voxel within a region
codes for a single psychological variable or condition, albeit to poten-
tially differing degrees. In the context of a multidimensional effect,
MVPA measures that take into account information from multiple
voxels (Fig. 1B) may be necessary to answer whether a region
codes for a particular psychological dimension or experimental
condition.

Consider, for example, a hypothetical experiment seeking to map
the neural basis of the psychological dimension ‘scariness’ for a set of
mammals (Figs. 1 & 2; see also Weber et al., 2009; Davis and Poldrack,
2013a). This experiment would be condition-rich (Kriegeskorte et al.,
2008), with exemplars (i.e., individual mammals) differing on a number
of underlying dimensions in addition to scariness, such as size and pre-
dacity. If scariness was related directly to activation in individual voxels
within an ROI (Fig. 2A), then univariate voxel-wise analysis would be
successful at mapping the neural basis of scariness in this experiment.
However, in some ROIs, scariness may only be decodable by taking
into account activation across multiple voxels, such as if an ROI contains
voxels that separately represent size and predacity, with which
scariness is presumably related (Fig. 2B; for further examples, see
Haynes and Rees, 2006). In this case, taking into account only a single
voxel that codes either size or predacity will not decode scariness as
accurately as MVPA methods that combine information from both size
and predacity voxels. Such multidimensional effects can also arise in
contexts for which the information that is distributed across voxels
relates to latent subfeatures of the representation of scariness that do
not directly admit a psychological interpretation.

Because univariate voxel-wise tests and MVPA differ in their ability
to detect multidimensional effects, it is tempting to conclude that
MVPA tests have identified a multidimensional code for a variable
when MVPA results are significant but voxel-wise tests are not (for

review, see Coutanche, 2013; Davis and Poldrack, 2013a). For example,
if univariate voxel-wise tests were unable to isolate voxels or regions
that activated for scariness, but MVPA tests were, one might be tempted
to conclude that the coding of scariness is distributed across multiple
voxels within these identified regions.

One potential problem with using differences between univariate
voxel-wise analysis and MVPA results to infer the dimensionality of
the underlying neural code is that the inductive validity of this inference
depends upon how likely differences between univariate voxel-wise
analysis and MVPA are to arise when only a single dimension underlies
activation patterns (see e.g., Poldrack, 2006). Here, we use simulations
to demonstrate the challenge of drawing conclusions regarding the
dimensionality of the underlying neural code based upon differences
between univariate voxel-wise analysis and MVPA. We highlight one
key difficulty, which is that the two analysis techniques differ in their
sensitivities to the sources of variability that are assumed to underlie
activation patterns in fMRI data; critically, these sources of variability
do not, in and of themselves, indicate anything about the dimensionality
of the underlying activation patterns.

Specifically, our simulation results indicate that MVPA is sensitive to
voxel-by-voxel (i.e., voxel-level) variability in the parameters (beta
weights) relating activation within voxels to experimental variables,
even when these voxel-wise parameters are draws from the same
unidimensional distribution (i.e., activation in all voxels directly maps
to the same psychological dimension). Contrastingly, univariate voxel-
wise methods are sensitive to the variability in the parameters relating
activation to experimental variables between subjects (i.e., subject-level
variability), whereas MVPA is insensitive to such subject-level variabil-
ity. In cases in which an underlying neural space is unidimensional but
high subject-level variability renders voxel-wise tests nonsignificant,
many common MVPA tests neutralize this subject-level variability and
will be significant as long as there is reliable voxel-level variability
within subjects.
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Fig. 2. An example of (A) unidimensional and (B) multidimensional effects with respect to
the scariness dimension. Mammals differ with respect to three dimensions: size, predacity,
and scariness. Scary animals are depicted in red. In the case of a unidimensional effect,
there is a direct mapping of scariness onto voxels within a region. Here Voxel 1 increases
as a function of scariness, and scary and non-scary animals can be differentiated (i.e., the
dotted-line marks a ‘scariness boundary’) based on the activation in this voxel. In the
case of a multidimensional effect, no voxel activates for scariness per se; instead, voxels
activate for either size or predacity, which are correlated with scariness. Decoding of
mammals' scariness (the latent dimension represented by the red line) is improved by
taking into account both the voxels that code for size and the voxels that code for
predacity. Scariness boundaries that take into account only a single dimension (i.e., the
dotted lines that are orthogonal to the size and predacity dimensions) may be able to
achieve some decoding of scariness, but will not achieve classification as accurate as
scariness boundaries that take into account both dimensions (i.e., the dotted line
orthogonal to the latent scariness dimension). Note that in the present example, a linear
classifier could achieve high accuracy by assigning equal weight to both voxels, and thus
in this context, it would also be possible to achieve high decoding accuracy by comparing
the mean of the two voxels to an appropriate criterion.

Our simulations, together with other possible differences in sensitiv-
ity to trial-level variability within subjects (see Discussion section), sug-
gest that, on their own, differences between MVPA and univariate
voxel-wise analysis techniques do not afford any conclusions about
the dimensionality (or any other representational status) of the neural
response to a stimulus or experimental condition. Instead, we argue
that conclusions about whether multi-voxel patterns constitute a dis-
tributed representation or some other multidimensional feature space
require explicit modeling of the hypothesized feature space or other
targeted tests of the dimensionality of the underlying activation pat-
terns, which we discuss in detail below (When does evidence support
the presence of a multidimensional effect? section).

Methods
Analytic framework: sources of variability in fMRI data

To establish the characteristics of fMRI data that univariate voxel-
wise analysis and MVPA are sensitive to, it is useful to consider what

the different sources of variability are in fMRI data. Common practice
in voxel-wise fMRI analysis suggests that there are three primary
sources of variability: trial-level variability, voxel-level variability, and
subject-level variability (Friston et al., 1994; Poldrack et al., 2011).
Thus, the activation (A) observed on any given trial t, in voxel v, for sub-
ject s is a combination of the fixed effects (y) of experimental variables
(X) across all subjects and random trial, voxel, and subject-level
deviations from these fixed effects (Figs. 3 & 4). These fixed and
random effects can be simulated as a three-level mixed-effects model
(e.g., Pinheiro and Bates, 2000; Raudenbush and Bryk, 2002; see
Diedrichsen et al., 2011 for a related random-effects model). This
simulation model captures the intuition that experimental variables
are repeated measures over both voxels and subjects in standard
univariate voxel-wise analysis.

The first level of the simulation model is the trial level. The trial-level
model implements what are often referred to as ‘first level’ or within-
subjects fMRI analyses. The variance component of interest in the
trial-level model corresponds to the trial-by-trial variability in a voxel's
activation from its expected value for a given subject and condition.
Activation in voxels often tends to vary from trial-to-trial even for the
same conditions. For example, viewing a scary mammal may elicit
activation that varies randomly across trials such that, even for the
same level of scariness, there are random trial-level deviations around
a voxel's mean activation. In most contexts in fMRI analysis, these
trial-level deviations from a voxel's expected activation are assumed
to be normally distributed with a mean of zero and standard deviation
equal to o.

The second level of the simulation model is the voxel level. The
voxel-level model describes how activation varies across voxels. The
variance components of interest in the voxel-level model correspond
to the voxel-by-voxel variability in average activation and the effects
of experimental variables (Figs. 3 & 4). In almost any ROI, there are
voxels that reliably (across trials) have a higher degree of average re-
sponse relative to other voxels. Likewise, the effects of experimental
variables often vary across voxels. For example, in our hypothetical
mammal experiment, even amongst voxels that exhibit a scariness ef-
fect, there will be voxel-level variability within most ROIs in terms of
how strongly each voxel reflects this effect. Common examples of how
variability may manifest include contexts in which there is a mixture
of relevant and irrelevant voxels (e.g., some voxels track scariness and
some do not), and contexts in which there are spatially isolated peaks
of activation and the effect of scariness decreases as a function of
distance-from-peak (e.g., Fig. 4B). Although voxel-level variability is as-
sumed to exist in fMRI data, it is rarely explicitly modeled, and in univar-
iate voxel-wise analysis, it often only comes into play in cluster-based
correction for multiple comparison (see Discussion section). Here we
explicitly simulate voxel-level variability, which is expressed by the
matrix, 7, in our formalism. This 7 matrix is related to the G matrix in
Diedrichsen et al.'s (2011) random effects model.

The final, third level of the simulation model is the subject level. The
subject-level model implements what are often referred to as ‘group
level’ or between-subjects fMRI analyses. The variance components of
interest in the subject-level model correspond to the subject-by-
subject variability in mean activation and the effects of experimental
variables. All fMRI analyses assume that the effects of experimental var-
iables, such as scariness, on activation will differ from person to person.
Group-level statistical maps reported from voxel-wise analysis examine
whether the values of the fixed effects corresponding to experimental
variables are large relative to subject-level variability. In the present
simulation model, the subject-level deviations from the fixed effects
are assumed to be normally distributed with a zero mean across
subjects and variability described by the matrix, 3.

Altogether, this mixed model assumes that the activation on any
given trial is some linear combination of trial-, voxel-, and subject-
level effects, which is shown in the combined model in Fig. 3. These
components make up the activation patterns that underlie fMRI analysis
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Fig. 3. A formal description of the 3-level mixed model for simulating fMRI data. At the trial level, the model simulates the activation on trial ¢, in voxel v, for subject s, as a linear
combination of the voxel-wise regression coefficients cand trial-level error e, observed on trial t, in voxel v, for subject s. The voxel-wise regression coefficients included are an intercept
term ap,s, Which corresponds to the mean or baseline activation in voxel v, for subject s, that is shared across trials, and «,,,, which are the regression coefficients relating the p trial-level
experimental X variables to activation in voxel v, for subject s. The trial-level errors, e,,s represent the deviation on trial ¢, in voxel v, for subject s from the activation predicted by the cs, and
are assumed to be normally distributed with mean of 0 and variance equal to %, The voxel-wise regression coefficients in the trial-level model can be expanded into voxel-level models
that take into account the repeated measurement of the baseline and X variables across voxels. The voxel-level models contain subject-wise (3 parameters that give the average baseline or
effect of experimental variable p across all voxels for subject s (for, 3o and Pps, respectively), and voxel-level errors that give each voxel v's deviation from the s for subject s. These voxel-
level error terms are assumed to be normally distributed with a mean of 0 and standard deviations equal to 7. In the present simulations, the voxel-level distributions for the baseline (eqys)
and effect of experimental X variable (ep,s) errors each have their own variance term (7o and 7, respectively) and are uncorrelated. The subject-wise coefficients can likewise be expanded
to subject-level models that take into account the repeated measurement of the baseline and X variables across subjects. The subject-level models have <y parameters, which correspond to
the fixed effects of baseline and X variables across all subjects. Like the other levels, this subject-level has error terms, which correspond to the deviation from the fixed effect parameters
observed for subject s. These error terms are also assumed to be normally distributed and uncorrelated in the present simulations, which is consistent with their estimation in standard
univariate analysis. Substituting the parameters from the voxel- and subject-level models into the trial-level model gives the combined equation for activation A on trial ¢, in voxel v, for
subject s, and illustrates how it is a function of the fixed effects parameters as well as the trial-,voxel-, and subject-level deviations from these fixed effects.

the hypothetical mammal experiment discussed in the Introduction
section. The simulations all include 60 trials or presentations of mam-
mal stimuli. The neural response for each trial is modeled as a multi-
voxel activation pattern over 50 voxels. All simulated measures are
calculated over independent draws of the model.

The Baseline Variability Simulation (Baseline Variability Simulation:
voxel-level variability makes activation patterns more similar section;

regardless of whether one takes a univariate voxel-wise or MVPA
approach.

Simulation methods

In our simulations, we varied parameters of the three-level mixed
model and examined how they impact univariate voxel-wise analysis

and MVPA. Each of our simulations can be thought of as implementing

3rd column in Fig. 5) was designed to examine how voxel-level
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Fig. 4. (A) A graphical depiction of the 3-level mixed model for simulating fMRI data (Fig. 2). Each level of the mixed model (subject, voxel, and trial) contributes variability to the observed
trial-wise activation patterns. This example depicts a case in which a dummy coded scariness variable (Not Scary (N) = 0; Scary (S) = 1) isincluded, and thus trials for scary stimuli receive
an added fixed effect of S in addition to added subject-level and voxel-level random deviations from the fixed effect of S. (B) A graphical depiction of how spatial variability in mean/
baseline activation persists over repeated trials and is not influenced by centering with respect to the mean activation across voxels (e.g., Baseline Variability Simulation). In this example,
mean activation in individual voxels tends to decrease as a function of distance from the peak voxel in the region-of-interest (ROI), such that across trials the central voxels tend to have the
highest signal, whereas the outside voxels have a lower signal. Such an effect may arise as a function of distance-to-capillary or any other anatomical differences that create reliable
variability in signal across voxels. The pattern caused by voxel-level variability persists across trials and is not eliminated by centering with respect to the mean activation across voxels
because the ROI mean does not include information about the voxel-wise deviations.
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Fig. 5. Parameter settings for different simulation models. The first column shows the parameters from Fig. 3 and the second column has a short description of the parameter. The following

4 columns illustrate the settings for the 4 simulations.

variability in baseline activation affects the clustering of activation
patterns and how its effects are modulated by its relationship to trial-
level variability. To this end, there were no effects of condition (scary
or not-scary); all stimuli only shared a baseline activation pattern
consisting of voxel-wise deviations between the voxel means and the
expected mean across all voxels (i.e., 0). These voxel-wise deviations
were draws from a single Gaussian distribution with mean of 0 and
standard deviation equal to 7. The main parameter of interest for this
simulation was 7o, which was varied across simulations from zero to
two in units of 0.25. The trial-by-trial variability (0) was set to one. All
other parameters were set to 0. Only one subject was simulated because
between-subject variability (3) terms were set to 0.

The Condition Variability Simulation (Condition Variability
Simulation: voxel-level variability in the effect of a condition can create
within-condition similarity and facilitates accurate classification sec-
tion; 4th Column in Fig. 5) was designed to examine how differences
in voxel-level variability between conditions affected within-condition
clustering and thus the ability for MVPA tests to discriminate between
conditions. To this end, the Condition Variability Simulation was the
same as the Baseline Variability Simulation except that half of the 60
trials were assigned to the “scary” condition and half were assigned to
the “not-scary” condition. A dummy-coded conditioning variable X
was included such that trials in the not-scary condition were indicated
with a 0 and trials in the scary condition were indicated with a 1. This
type of parameterization is common in univariate mixed-model
approaches to repeated measures designs (Pinheiro and Bates, 2000).
A dummy-coded parameterization assumes that the effect of not-scary
stimuli is equivalent to the baseline activation in each voxel, and an
additional unidimensional effect is added to each voxel for stimuli that
are perceived as scary. These voxel-wise deviations for the effect of
scariness are draws from a single unidimensional Gaussian distribution
with mean of 0 and variance of 7,. The voxel-wise standard deviation
for the baseline between-voxel variability (7o) was set to 1, while the

standard deviation corresponding to between-voxel variability in the
effect of scariness (7,) was varied across simulations from zero to two
in units of 0.25. All other parameters were set to 0.

The Item Variability Simulation (Item Variability Simulation: voxel-
level variability in the effect of a continuous variable can increase
similarity within items and cause accurate single item classification in
multiple item designs section; 5th column in Fig. 5) was designed to ex-
tend the results of the Condition Variability Simulation to a continuous
scariness variable X with six values (1 to 6). This creates a unidimen-
sional space in which each of the six values is represented. Ten trials
were assigned to each of the six levels of X. The standard deviation
corresponding to the between-voxel variability in the effect of the
continuous scariness variable X (7,) was varied across simulations
from zero to five in units of 0.25. The voxel-wise standard-deviation
for the baseline between-voxel variability (7p) was set to 1.

The Subject Variability Simulation (Why is MVPA often more power-
ful than univariate analysis? section; 6th Column in Fig. 5) was designed
to examine how univariate voxel-wise and MVPA tests' abilities to
differentiate scary and not-scary stimuli were impacted by between-
subject variability in the effect of scariness on activation, and how or
whether between-subject variability interacts with voxel-level variabil-
ity. The Subject Variability Simulation therefore returned to a dummy
coded scariness variable X. In the context of the subject-level model, a
dummy coded parameterization assumes that not-scary stimuli have
the same effect as baseline for all subjects, and an additional univariate
effect is added to each activation pattern for stimuli that are perceived
as scary. These subject-level deviations for the effect of scariness are
assumed to be draws from a single univariate Gaussian distribution
with mean of 0 and variance of 3. This parameterization is equivalent
to common univariate ROI-based repeated measures procedures for
testing whether an ROI exhibits a mean effect of scariness across
subjects. The standard deviation corresponding to between-subject
variability in the mean effect of the scary condition, 3,, was varied
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from zero to four in units of one for each of four levels of voxel-level var-
iability in the effect of scariness (7,,; 0.01, 0.1, 0.2, 0.3). The voxel-wise
standard-deviation for the baseline between-voxel variability (7o) was
set to 1. Because the Subject Variability Simulation varied between-
subject variability, we included multiple subjects (s = 20) and report
all outcome variables in terms of the distributions of parameter values
between subjects for consistency with how between-subject effects
are tested and reported in empirical studies.

The statistical measures employed in our simulations include two
multivariate measures, correlation and classification accuracy using
support vector machines (SVMs), as well as standard univariate
measures such as mean activation across voxels. Correlation is a useful
measure in this context because it is insensitive to the mean value of
activation patterns for each stimulus (but see, Why is MVPA often
more powerful than univariate analysis? section). Thus relationships
between stimuli cannot be due to effects of mean activation (which
voxel-wise analysis is most concerned with), and the expected
between-trial correlations remain the same regardless of whether
parameters of the three-level model that affect mean activation for a
stimulus are explicitly manipulated. To extend the same properties to
SVMs, we normalized (z-scored) each stimulus's activation pattern
across voxels prior to classification in all simulations. A linear-v SVM,
with v fixed at 0.01, was used for all simulations (v was not varied
because our goal was not to optimize the SVMs, but rather to simply
illustrate their sensitivity to spatial variability).

Code for all of the simulations reported here is available at http://
www.poldracklab.org/software/.

Results
Do significant MVPA effects indicate multidimensional patterns?

Our first set of simulations examined the impact of voxel-level vari-
ability on MVPA results. Voxel-level variability is assumed to exist in
standard applications of voxel-wise analysis. For example, nearly all
efforts to localize cognitive function assume that the effects of experi-
mental variables differ across voxels that belong to different anatomical
regions (Cohen and Bookheimer, 1994), or even within regions as a
function of distance from focal peaks of activation. However, in and of
itself, voxel-level variability does not indicate that the included voxels
code different dimensions or that there is a multidimensional effect
present. Indeed, in all of the present simulations, the deviations be-
tween a voxel's activation and the mean activation across voxels are
draws from a single univariate Gaussian distribution, meaning that all
voxels code for the same, single dimension, but just to different degrees.

Baseline Variability Simulation: voxel-level variability makes activation
patterns more similar

To examine how and why MVPA is sensitive to voxel-level variabil-
ity, we calculated the correlation between activation patterns for trials
over changes in voxel-level variability in baseline activation (7o) while
holding trial-level variability (0) constant. In this first simulation,
there are no effects of condition (e.g., scary or not-scary).

The simulation revealed that as voxel-level variability in baseline ac-
tivation (7o) increases relative to the trial-level error, the correlations
between trial-wise activation patterns increase despite the fact that
there are no multidimensional effects or mean activation differences
between trials (Fig. 6A).

To better understand why the correlations between trials are non-
zero when voxel-level variability in baseline activation is greater than
zero, we can examine what information is contained in the activation
patterns (Eq. (A1)). Subtracting the sample mean, which occurs auto-
matically in correlations (and all trial-normalized MVPA measures),
removes subject- and group-level information about the overall mean
activation within an ROI. However, it leaves in the voxel-level variability
or how voxels tend to deviate from this mean across trials (e.g., Fig. 4B).

Because these voxel-level deviations are repeated across trials, the
expected correlations between two trials will always be greater than
zero when there is reliable voxel-level variability; because correlations
are sensitive to shared variability, correlations rise as this shared
voxel-level variability increases. In the present case, the properties of
the distribution of voxel-level effects are known; the distribution is a
univariate Gaussian distribution with mean of 0 and standard deviation
of 7o. Therefore it is possible to predict the average correlation between
trials analytically by examining the proportion of total variability in the
voxel-wise coefficients (voxel- and trial-level; Fig. 6A) that is related to
voxel-level variability (Eq. (A2)).

Generalizing to more real-world contexts, this simulation suggests
that the average expected correlation or ‘similarity’ between any two
trials in a task will nearly always be non-zero. Voxel-level variability
in baseline activation, which is the focus of this simulation, is ubiqui-
tous. Signal differences stemming from partial voluming of white and
gray matter, proximity to venous outflow, and a number of other ana-
tomical considerations (e.g., susceptibility artifacts), all create variabili-
ty in the mean BOLD response of voxels that will tend to be reliable
across trials. Subtracting the mean activation (across voxels) from the
trial-wise activation patterns does not eliminate these voxel-level
patterns because mean activation and voxel-wise variability are inde-
pendent parameters of the activation patterns.

Condition Variability Simulation: voxel-level variability in the effect of a
condition can create within-condition similarity and facilitates accurate
classification

The results from the Baseline Variability Simulation (Baseline
Variability Simulation: voxel-level variability makes activation patterns
more similar section) can be directly extended to more common appli-
cations of MVPA, such as when the goal is to examine whether activa-
tion patterns differ between levels of an experimental variable. In the
Condition Variability Simulation, we set voxel-level variability in base-
line activation (7o) to a fixed value of 1, but now included an experi-
mental “scariness” variable X with two levels, “scary” and “not-scary”.
X was dummy coded such that when a trial is categorized as not-
scary, X = 0, and when a trial is categorized as scary, X = 1. Analogous
to the Baseline Variability Simulation (Baseline Variability Simulation:
voxel-level variability makes activation patterns more similar section),
we varied the magnitude of the voxel-level variability in the effect of
X (7p) relative to the trial-level errors. Because the Condition Variability
Simulation involved a conditioning variable, we investigated how
changes in voxel-level variability affect the observed mean correlations
between trials within the scary and not-scary conditions (within-condi-
tion correlations) as well as the mean correlation between trials from
different conditions (between-condition correlations).

The Condition Variability Simulation revealed that within-condition
similarity increases in the scary condition as voxel-level variability in
the effect of scariness (7)) increases relative to the trial-level errors
(Fig. 6B). This is for the same reason that general between-trial cor-
relation increased in the Baseline Variability Simulation (Baseline
Variability Simulation: voxel-level variability makes activation patterns
more similar section); the voxel-wise deviations from the mean effect of
scariness are repeated across trials, and thus they increase similarity
within the scary condition. The mean correlations within the not-scary
condition do not change with increases in 7, because the not-scary con-
dition is coded with a 0 for the scariness variable X and thus the voxel-
wise deviations from the mean effect of scariness only affect similarity
within the scary condition. Likewise, voxel-level variability in the effect
of the scariness variable adds variability to activation patterns for stim-
uli in the scary condition that is not added to activation patterns for
stimuli in the not-scary condition. Thus pairwise correlations between
activation patterns for scary and not-scary stimuli decrease as a function
of .. As with the Baseline Variability Simulation, the precise values of
these correlations can be predicted analytically by evaluating how
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Fig. 6. Results from the Baseline, Condition, and Item Variability simulations. (A). Results from Baseline Variability Simulation. Points indicate the observed mean of the between-trial
correlations for each level of voxel-level variance in baseline activation (7o) averaged over simulations. Error bars depict the 1st and 3rd quartiles of the distribution of the simulation
means. The line depicts the analytical prediction for between-trial correlations generated using Eq. (A2). (B). Correlation results from Condition Variability Simulation. Points indicate
observed mean correlations across simulations between trials within the scary (S) and not-scary (N) conditions, as well as between conditions (B). The lines depict analytical predictions
for each correlation generated using Eqs. (A2)-(A4). (C). Support vector machine classification results for Condition Variability Simulation (chance = 0.5). (D). Correlation results for Item
Variability Simulation. Points indicate within-item correlation for 6 items that differ continuously with respect to a continuous scariness variable. (E). Support vector machine classification
results for [tem Variability Simulation. The support vector machine was trained to classify each of the 6 different items that varied continuously with respect to a single conditioning

variable (chance = 0.167).

large the voxel-level variance components (7o & 7,,) are relative to the
trial-level variability, o (Egs. (A3)-(A4); Fig. 6B).

To examine whether voxel-level variability in the effect of a variable
impacts other types of MVPA beyond correlation, we performed the
same simulation using a linear v-support vector machine (SVM) classi-
fier. Consistent with the findings that within-condition similarity in-
creases and between-condition similarity decreases as a function of
increasing 7, classification accuracy increased as voxel-level variability
in the effect of scariness (7,,) increased (Fig. 6C).

Consistent with the Baseline Variability Simulation, we found that
voxel-level variability in the effect of an experimental “scariness” vari-
able leads to higher within-condition similarity for activation patterns
that share this variance component. Further, this voxel-level variability
leads to accurate decoding of condition (scary or not-scary) using SVMs.
The voxel-level deviations in the effect of scariness that drive the effect
are independent draws from the same univariate Gaussian distribu-
tions, and thus carry the same information about the experimental
variable (i.e., that a trial was categorized as scary).
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These results suggest that reliable classification and within-
condition similarity arise when there is reliable voxel-level variability
in the effects of experimental variables, and thus do not necessarily
reflect distributed multidimensional effects or any conclusions that are
not warranted by standard univariate voxel-wise analysis. Indeed, in
all cases, the activation patterns for stimuli were generated by, and
thus consistent with, a simple linear voxel-wise mapping of a single
experimental condition onto activation in individual voxels.

Item Variability Simulation: voxel-level variability in the effect of a
continuous variable can increase similarity within items and cause
accurate single item classification in multiple item designs

The results of the Baseline and Condition Variability Simulations
(Baseline Variability Simulation: voxel-level variability makes activa-
tion patterns more similar and Condition Variability Simulation:
voxel-level variability in the effect of a condition can create within-
condition similarity and facilitates accurate classification sections) ex-
tend directly to cases in which stimuli vary continuously with respect
to an experimental variable, which is assumed to occur in almost all cog-
nitive domains from basic visual and auditory perception (Jancke et al.,
1998; Tootell et al., 1998) to language and memory research (Clark,
1973; Rouder and Lu, 2005). For example, in our hypothetical mammal
experiment, different stimuli are assumed to be associated with differ-
ent levels of scariness (Fig. 2). In the Item Variability Simulation, we ex-
amined how, by sharing the same level of a continuous scariness
variable, activation patterns for repetitions of stimuli or “items” may be-
come more similar to each other or classifiable. These measures have
been used in previous studies to support claims that activation patterns
reflect multidimensional representations of individual stimuli.

The Item Variability Simulation extended the Condition Variability
Simulation (Condition Variability Simulation: voxel-level variability in
the effect of a condition can create within-condition similarity and facil-
itates accurate classification section) such that six ‘items’ were present-
ed ten times each. Critically, each item was associated with a unique
value with respect to the scariness variable (1 to 6; as opposed to two
conditions represented by 0 or 1 values), thus creating a single dimen-
sion in which the six different items are represented. Again, we find
that this manipulation increased shared variability between within-
item pairs, resulting in increased within-item correlations as voxel-
level variability in the effect of scariness (7,) increased (Fig. 6D). As
with the above dummy coded case, the introduction of voxel-level var-
iability in the effect of a continuous conditioning variable leads to better
than chance classification performance with SVMs trained to discrimi-
nate between the six individual items (Fig. 6E).

These results reveal that findings of high within-item similarity or
successful individual item classification do not necessarily imply that
an activation pattern contains a multidimensional representation.
Discrimination of individual items based on multi-voxel patterns can
arise simply from the tendency for items to be associated with similar
values of an experimental variable across repeated presentations.

Interim conclusions

Together, the results of the first three simulations illustrate that
significant MVPA results do not definitively indicate that the processing
or representation of a stimulus is multidimensional or differs in any
other meaningful way from what is assumed by the univariate voxel-
wise analysis. Instead, MVPA may only indicate what is already assumed
in most contexts in which the voxel-wise analysis is employed — that
the effect of an experimental variable varies across voxels. Knowing
how large voxel-level variability is relative to the trial-level error
variability is potentially useful information that is often not directly
computed in the voxel-wise analysis; however, it does not, in and of
itself, indicate anything beyond there being some reliability in the effect
of an experimental variable across trials within a subject.

Why is MVPA often more powerful than univariate analysis?

The foregoing results raise the question of why MVPA is often more
powerful than univariate voxel-wise analysis, if it is not picking up on
distinct non-redundant information in the multi-voxel activation pat-
terns (e.g., Jimura and Poldrack, 2012). Although there may be numer-
ous reasons for MVPA's heightened power, a primary reason may be
that voxel-wise analysis depends on how strongly an experimental var-
iable activates voxels or an ROI relative to the variability in activation
between subjects, whereas the above simulations hint that MVPA may
largely depend on the relationship between voxel-level variability in
the effect of experimental variables and trial-level error.

Subject Variability Simulation: sensitivity to subject-level variability leads
to differences between MVPA and univariate results

To examine the sensitivity of voxel-wise analysis and the impervi-
ousness of MVPA to subject-level variability in mean activation, we
ran a simulation in which we varied the value of subject-level variability
in the mean effect of scariness (3,). We simultaneously varied voxel-
level variability in the effect of scariness (7,) to test how and whether
subject-level variability interacted with voxel-level variability and as a
general test of how sensitive group-level MVPA results are to small
levels of voxel-level variability. To this end, we simulated 7, at values
0f 0.01, 0.1, 0.2 and 0.3, which correspond to contexts in which voxel-
level variability in the effect of scariness makes up 0.005%, 0.5%, 1.96%,
and 4.3% of the total within-subject variability for scary trials,
respectively.

As predicted, we found that increasing subject-level variability in the
effect of scariness (3,) increases the observed variability in the univar-
iate voxel-wise effect magnitude, resulting in decreased statistical sig-
nificance for the univariate effect of scariness as between-subject
variability increases (Fig. 7; Column 1). This same basic pattern was
found regardless of the level of voxel-level variability in the effect of
scariness (7,): at values of 3, of approximately 2, about half of the
group-level univariate significance tests were non-significant regard-
less of the value of 7,.

Group-level statistical tests for the MVPA measures showed the
opposite results (Fig. 7; Columns 2-3). At low levels of 7, (0.01;
Fig. 7A), neither the correlation-based nor SVM tests revealed signifi-
cant group-level results regardless of the level of 3,,. Correlation-based
and SVM group-level statistical tests became more significant as 7, in-
creased but remained independent of 3,. SVMs were considerably
more powerful than the correlation-based measure, with better than
chance accuracy (across subjects) occurring at values of 7, as low as
0.1 (Fig. 7B). However, both measures were significant and impervious
to subject-level variability at values of voxel-level variability that are
realistic given the known signal-to-noise properties of BOLD fMRI
(e.g., Ogawa et al., 1998).

Given that subject-level variability in mean activation is the primary
variance component that goes into group-level univariate statistical
tests, it is of little surprise that when it is high, there is less power to
detect a significant univariate effect. However, it is somewhat more
surprising that this variance component has no impact on our MVPA
measures.? This is because increasing the variability of mean activation
(2) across subjects has no impact on the voxel-level variability (the 7
matrix) for cases in which a single mean is sufficient for describing the
effect of an experimental variable across voxels and there are no inter-
actions between voxels and the effect of an experimental variable (see
also, Davis and Poldrack, 2013a). For contexts in which there are
voxel-level interactions with experimental variables (e.g., some voxels
in an ROI do not activate), as would likely occur in many ROIs, increasing

2 The SVM-based significance tests will vary as a function of the mean difference be-
tween conditions (scary and not-scary) within a subject if activation values are not nor-
malized before analysis. However, in the present case, this will only increase the power
of the SVM results as it adds information that differentiates the conditions.
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Fig. 7. Results from Subject-level Variability Simulation. Column 1 depicts group-level t-tests for the mean effect of scariness. Column 2 depicts group-level t-tests for the difference in
within-condition correlations between scary and not-scary stimuli. Column 3 indicates classification accuracy for linear SVMs trained to classify activation patterns of scary and not-
scary stimuli. The dotted lines in the t-test figures reflect the minimum ¢ needed for statistical significance. The black lines in the SVM analysis depict chance classification (50%). Rows
correspond to different levels of voxel-level variability in the effect of memory (A = 0.01; B=0.1; C=0.2; D = 0.3).

the between-subject variability in mean activation may also increase condition interactions, group-level MVPA may be affected by
voxel-level variability and the between-subject variability of the between-subject variability in activation (see e.g., LaRocque et al.,
voxel-level variances (the 7 matrix). Thus, in cases of voxel-by- 2013; Smith et al., 2011; Tong et al., 2012). Because of the infinite
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ways that voxel-by-condition interactions can manifest, it is not possi-
ble to give precise a priori predictions for how they impact MVPA in
all contexts. However, we have found no cases in which subject-level
variability in activation eliminates MVPA effects in the presence of reli-
able voxel-level variability within subjects.

Altogether, these results suggest a plausible context in which MVPA
and univariate results will differ. High subject-level variability in mean
activation is ubiquitous in neuroimaging studies. Being able to neutral-
ize the effects of this subject-level variability thus results in MVPA hav-
ing greater sensitivity to detect effects relative to voxel-wise analysis.
Importantly, however, this does not indicate that there is anything
beyond a simple linear mapping of the same experimental variable to
individual voxels driving the results.

Discussion

In our simulations and supporting formalism (see Appendix A), we
illustrate how an omnipresent signal in univariate voxel-wise analysis,
the variability of an experimental effect across voxels, can lead to signif-
icant similarity relationships between items, as well as significant
within-condition clustering of multi-voxel activation patterns that is
detectable using common MVPA methods. Moreover, because this clus-
tering only depends on the magnitude of voxel-level variability in the
effect of a condition relative to that of within-subject trial-level error,
itis insensitive to subject-level variability in mean activation, the prima-
ry variance component that impacts group-level univariate voxel-wise
tests. Thus MVPA methods may be more powerful than univariate
voxel-wise tests, not because they are inherently better at tapping
into multidimensional neural representations and processes than
voxel-wise analysis, but because they are able to (a) exploit voxel-
level variability within subjects that is discarded in univariate voxel-
wise analysis, and (b) discard subject-level variability in mean activa-
tion that can reduce sensitivity in univariate voxel-wise analysis.

In our simulations of a hypothetical fMRI experiment, it was possible
to decode a ‘scariness’ variable with MVPA that was not detectable using
univariate tests. However, as each voxel coded only for the single neural
dimension of scariness, it would be problematic to use these divergent
results to conclude that coding of scariness across voxels is multidimen-
sional in the sense that non-overlapping information about scariness is
coded in different voxels. Although we frame much of our discussion in
terms of such differences between multidimensional and unidimen-
sional effects, these results directly extend to other occasions when sub-
stantive conclusions are drawn about the nature of the underlying data
based solely on differences in the sensitivity of MVPA and univariate
voxel-wise analysis. Because MVPA and voxel-wise analysis are sensi-
tive to different aspects of activation patterns, differences in the distri-
bution of significant MVPA and univariate tests across the brain do not
(in and of themselves) allow for definitive conclusions about the nature
of processing in those regions.

Our simulations focus on how differences between univariate voxel-
wise analysis and MVPA can arise because of differences in their sensi-
tivity to the variance components that are assumed to exist in activation
patterns by application of standard voxel-wise analysis. However, it is
important to note that there may be a number of additional reasons
why the results of MVPA tests will differ from voxel-wise tests in any
given context. For example, even within a single subject (a case in
which subject-level variance is no longer relevant), MVPA effects may
be more powerful than voxel-wise tests simply because MVPA is able
to reduce the noise inherent in single-voxel observations by integrating
information from multiple noisy sources.

Our simulations of univariate analysis focus on the influence of
subject-level variability, which is the primary variance component of
interest in the majority of studies examining univariate activation.
However it is possible to develop decoding tests based on mean activa-
tion that, like MVPA, are insensitive to subject-level variability. One of
these is to use the mean of an ROI to decode conditions within subjects

instead of using the multi-voxel activation patterns (e.g., Coutanche,
2013). Such a test effectively neutralizes between-subject variability in
the magnitude of the effect of condition: conditions will be decodable
as long as the effects of condition within individual subjects are large
relative to the trial-level error. Importantly, while this technique can
make MVPA and univariate analysis more comparable in their sensitiv-
ity to subject-level variability, divergence in results across the two tech-
niques does not necessarily provide additional information about the
dimensionality of a neural representation. Indeed, in our within-
subject simulations (Simulations 2-3; 3.12 & 3.13), there was no
mean effect of condition (which renders decoding based on mean acti-
vation in an ROl ineffective), but we still achieved reliable MVPA results.

The extent to which MVPA and classification based on mean activa-
tion within an ROI will yield different results within a given subject
depends simply on the relationship between mean activation across
an ROI and the voxel-level variability. If the mean effect of condition
on activation is high relative to the trial-level error, conditions will be
decodable based on means; if voxel-level variability is high relative to
trial-level error, conditions will be decodable with MVPA. If either of
these effects is small relative to trial-level error, only one effect may
be observed. For example, in cases in which there is no voxel-level var-
iability and all voxels simply activate to the same level for scariness
within a subject, classification of scariness by mean activation will be
successful, but mean centered MVPA measures would not. Likewise, if
an ROI contains equal numbers of voxels that are positively and nega-
tively responsive to scariness (thus canceling each other out in terms
of the mean), classification will only be possible with MVPA.

Voxel-level variability in fMRI analysis

The present results raise the question: How does voxel-level vari-
ability relate to information processing in the brain? At a large scale,
voxel-level variability in the neural response to an experimental manip-
ulation is usually taken as evidence for anatomical selectivity in function
related to that manipulation (Cohen and Bookheimer, 1994). Of course,
voxel-level variability due to anatomical selectivity is only one situation
in which variability arises. Variability may also arise from spatially dis-
tributed effects within clusters or anatomical regions, as a function of
distance from peak of activation (Fig. 4B), as a function of distance
from venous flow, or as a result of an ROI containing a mixture of active
and non-active voxels. Thus voxel-level variability is an omnipresent
component of fMRI data that, on its own, cannot be automatically
assumed to reflect the brain's underlying coding of experimental
variables.

As these examples highlight, in most real-world contexts, aside from
well-circumscribed ROIs with high spatial homogeneity, the distribu-
tion of voxel-level deviations from the mean of an ROI will not conform
to the idealized Gaussian distributions that we use to simulate voxel-
level variability here. For example, in the cases of mixtures where an
ROI contains some voxels that activate for an experimental variable
and some that do not, the distribution of voxel-level deviations will like-
ly manifest as a bimodal distribution. Depending on the extent to which
the voxel-level distributions deviate from Gaussian, our formal quanti-
tative predictions for how voxel-level variability relates to MVPA mea-
sures (see Appendix A) may no longer hold precisely. However, the
general qualitative conclusions will hold regardless of the form of the
distribution for the voxel-level deviations. As voxel-level variability in
activation increases relative to trial-level error, MVPA effects will be in-
creasingly detectable regardless of the form of this variability. Likewise,
systematic voxel-level variability due to mixtures of active and non-
active voxels will have no effect on univariate voxel-wise analysis. The
significance of univariate voxel-wise activation within any individual
voxel or subset of voxels will still depend upon the subject-level
variability in activation; high between-subject variability in the effect
of a condition will lead to non-significant voxel-wise results regardless
of how the voxels are spatially organized.
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Although the basic conclusions of our results are not restricted to
Gaussian distributed data, it is important to note that Gaussian distribu-
tions are critical for allowing us to systematically manipulate the differ-
ent mean and variance parameters in our simulations. In many real-
world distributions, such as cases of mixtures of active and non-active
voxels, increasing the mean activation of active voxels simultaneously
increases the voxel-level variability because it increases the difference
between the active voxels and the non-active voxels that do not exhibit
the experimental effect. Thus even though the conclusions we reach are
not unique to a particular type of distribution, Gaussian distributions are
useful in that they allow us to easily and independently manipulate the
signals that impact voxel-wise analysis and MVPA.

A final interesting question is how systematic, non-Gaussian, voxel-
level variability between subjects would be accounted for within
our simulation framework. As discussed above, on many occasions, re-
searchers predict that there is systematic voxel-level variability across
subjects because this indicates anatomical specificity in the effect of an
experimental variable of interest. A conceptually straightforward way
of including anatomical specificity within our three-level mixed model
would be to include anatomical regions as fixed effects; in this analysis,
additional voxel-level indicator variables would be included that add an
effect of condition only if a voxel is a member of an anatomical region. It
is important to note, however, that the significance tests for these fixed
effect coefficients relating experimental variables to activation within a
specified ROI will still depend upon the variability of the subject-level
deviations from these parameters, as demonstrated in our simulations.

It would also be possible to account for anatomical specificity using
cluster-correction methods, which are the most common way of taking
systematic voxel-level variability into account in univariate voxel-wise
analysis. In cluster-correction, voxels are assigned to groups or clusters
at the very end of data analysis based on a statistical criterion, such as
whether the average parameter estimate across subjects is large relative
to its variability between subjects. As subject-level variability is incorpo-
rated directly in this cluster-forming threshold, increased subject-level
variability will also necessarily reduce the ability of cluster-correction
methods to detect significant clusters, by reducing the extent to which
individual voxels reach the inclusion threshold.

When does evidence support the presence of a multidimensional effect?

Our results suggest that differences between voxel-wise and MVPA
results do not warrant conclusions about the dimensionality of the un-
derlying activation space, raising the question of when it is possible to
draw such conclusions. The most straightforward way to conclude
that multiple dimensions underlie an effect is to employ a voxel-wise
encoding model to test how a hypothesized set of dimensions map
onto activation patterns (Mitchell et al., 2008; Naselaris et al., 2011).
Encoding models work by mapping a basis set of features that underlie
processing of a group of stimuli in a task onto their neural response,
often times using standard univariate voxel-wise models. For example,
in the mammal space we introduced above, an encoding model would
start with the known size and predacity of a set of mammals and regress
these dimensions on the voxel-wise activation patterns elicited by the
mammals during the task. Instead of examining whether these dimen-
sions significantly activate voxels or clusters, as is commonly done
in univariate voxel-wise tests, the test of significance for encoding
models is often based on the reconstruction accuracy of the multi-
voxel response for left out items (e.g., how well these items are classi-
fied). If reconstruction is improved by including a dimension in the
basis set, then the hypothesis that this dimension (or multiple dimen-
sions) underlies processing in the space is supported. Relating this to
the mammal space, if including both size and predacity of mammals in
the encoding model improves reconstruction of the multi-voxel activa-
tion patterns for other mammals not included in the original model,
then the hypothesis that multiple dimensions shape the brain's process-
ing of mammals is supported.

The challenge for encoding models, in the present context, is that
they require at least some of the dimensions hypothesized to underlie
processing of conditions or stimuli to be included in the model.
Contrastingly, MVPA decoding methods do not require the precise
dimensions underlying a stimulus space or the feature values of each
stimulus along these dimensions to be known. Instead, decoding is
accomplished from a latent feature space, but as we saw in the above
simulations, MVPA decoding results themselves do not give any infor-
mation about the content or dimensionality of this space.

The desire to draw multidimensional conclusions from neuroimag-
ing data has inspired recent efforts to develop methods for measuring
the dimensionality of neural activation patterns underlying MVPA
results. Diedrichsen et al. (2013) proposed a method for revealing the
dimensionality of multi-voxel activation patterns that involves
decomposing fMRI images into a linear combination of independent
components, and then adding those components one-by-one into the
classifier analysis. If classifier performance does not increase by adding
additional pattern components, then it is concluded that only a single,
unidimensional pattern component is driving MVPA results, whereas
if adding components leads to increased performance, the dimensional-
ity is concluded to be greater than one.

Importantly, knowing the dimensionality of a space is only one part
of what researchers are often interested in. Often times it is important to
also know the content of these dimensions or what representational
or process-level information they contain. Multidimensional scaling
(MDS) techniques can be used either in isolation (Davis and Poldrack,
2013b; Diedrichsen et al., 2011; Kriegeskorte et al., 2008; Liang et al.,
2013) or in tandem with Diedrichsen et al.'s (2013) analytic dimension-
ality solution to uncover the content of the dimensions underlying clas-
sifier performance or similarity analysis. MDS techniques project the
similarities or classification confusion matrices between stimuli/condi-
tions onto a lower dimensional space that can be more easily visualized.
Two criteria are often considered important in multidimensional scal-
ing: how interpretable the recovered dimensions are, and how much
variability in the original similarity/confusion matrices is accounted
for by the scaling solution. However, as variability accounted for will
never decrease as dimensions are added in MDS, it will often be useful
to pair MDS with a cross-validation technique like Diedrichsen et al.'s
(2013) method or another method that will penalize for complex
models that overfit the data, such as the BIC (Lee, 2001).

One important point to keep in mind when drawing conclusions
about the dimensionality of a space is to avoid conflating the dimen-
sionality of the measurement or decoding technique with the true
dimensionality of the activation patterns underlying the analysis.
The dimensionality extracted by a decoding technique will often be
constrained by mathematical assumptions and it is important to be cog-
nizant of how these assumptions constrain the extracted dimensionality
in any given analysis context. For example, linear classifiers, as used in
Diedrichsen et al.'s (2013) model and in our linear-kernel SVMs will re-
veal a maximum of C — 1 independent dimensions (or margins) that
separate stimuli (where C is the number of classes the classifier is
trained to discriminate between). Thus, given only two categories,
‘scary’ and ‘not scary’, linear classifiers will always separate the mam-
mals in the mammal-space based on a single pattern dimension. How-
ever, if a linear classifier is trained to classify individual exemplars
(e.g., the individual mammals; see Weber et al., 2009) or techniques
like MDS used on the pairwise similarities between exemplars, the di-
mensionality can be as high as K — 1 (where K is the number of unique
exemplars). Each of these techniques could lead to a different solution
for the dimensionality of the mammal space in our example (Fig. 2B),
depending on how the data are analyzed. This point further highlights
how the assumptions underlying various analysis techniques can con-
strain results and the importance of considering multiple techniques
when making strong conclusions about dimensionality.

Likewise, it is important to avoid conflating the psychological or neu-
ral dimensions contained in the activation patterns with the dimensions
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extracted by decoding models. In some cases, a single dimension in a
model (e.g., a single linear discriminant) may correspond to multiple di-
mensions in the activation patterns. For example, in our hypothetical
mammal experiment, a single linear discriminant could lead to accurate
decoding of the mammal space and scariness, but this would not mean
that the neural representation of the mammal space was unidimension-
al with respect to the properties coded by the two voxels (Fig. 2B). In
other cases, a measured dimension in a model, such as a linear discrim-
inant, may be a true single-dimensional measure with respect to the
contents of activation patterns, such as in our simulations where each
voxel simply differentiates between whether or not a mammal is per-
ceived as scary, albeit to different degrees (see also, Haynes and Rees,
2006). Building encoding models of information processing within a
region therefore remains the only definitive way to make strong conclu-
sions about the region's dimensionality and representational content
(for related arguments, see Naselaris et al.,, 2011).

Between-subject variability in MVPA

In another recent study that did not consider multidimensional ef-
fects per se, but touched on principles related to our between-subject
variability findings, Todd et al. (2013) found that because MVPA dis-
cards directional information, it can allow confound variables that are
typically controlled for in group-level univariate analysis to impact
MVPA results. In the present study, we examined a more general situa-
tion where there is simply high between-subject variability in the im-
pact of an experimental variable on activation. As our mixed-model
formulation of the voxel-wise analysis illustrates, MVPA remains sensi-
tive to differences between conditions even under high between-
subject variability not because it discards directional information per
se, but because MVPA tests are primarily dependent on the relative
magnitudes of voxel-level variability and trial-level error. If there is re-
liable variability across voxels within subjects, an effect will be signifi-
cant regardless of the characteristics of the distribution of subject-
level activation effects (e.g., high variance; subjects having opposite ef-
fect directions as in Todd et al.,, 2013). This suggests that, although dif-
ferences between MVPA and univariate voxel-wise results may be due
to susceptibility to confounds, as suggested by Todd et al. (2013), they
could also arise from something as simple as variability in activation be-
tween subjects. Because high subject-level variability in activation is
ubiquitous in fMRI studies, our results hint that many dissociations be-
tween univariate voxel-wise and MVPA results may be due to MVPA's
ability to neutralize subject-level variability in mean activation and
not because of more theoretically relevant signals that MVPA decoding
methods are sensitive to, such as multidimensional effects.

Conclusions

Although multi-voxel methods are promising techniques for fMRI
data analysis, they do not necessarily allow for any special conclusions
about how information in the underlying activation patterns is encoded,
whether an effect is multidimensional or unidimensional, or that an ef-
fect differs in any other substantive way from a simple linear mapping
of a single experimental variable onto voxels within a region. In many
cases, MVPA tests may be providing information that is largely assumed
by the group-level statistical maps already reported in most papers (e.g.,
Rissman et al., 2010): experimental effects vary across voxels. As formal
tests of this variability, MVPA results may be more sensitive indicators
of heterogeneity of response across regions or voxels within a region.
However, knowledge of this variability does not confer any special the-
oretical status to the results in and of itself. Instead, to make conclusions
about the dimensionality or content of the activation patterns that stim-
uli elicit, it is important to incorporate additional methods that explicit-
ly measure these aspects of the activation patterns, such as encoding
models, classifier-based tests of dimensionality, and multidimensional
scaling.
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Appendix A. How voxel-level variability impacts MVPA

Our simulations show that manipulations affecting a single underly-
ing cognitive dimension can be sensitively detected by MVPA measures
that are, by definition, insensitive to the mean level of activation across
voxels. For example, pattern correlation subtracts out the mean level of
activation across voxels; how does pattern correlation achieve the levels
of sensitivity shown in our simulations, despite its insensitivity to the
mean? This occurs because the sample mean across voxels on trial t
for subject s (1s) only contains information about the model parameters
that do not differ between voxels (i.e., that do not contain a voxel
index). For example, the sample mean for trial t within subject s con-
tains information about the mean coefficients across subjects (the vy
vector) as well as subject-level deviations from these mean coefficients
(Bs). However, because the trial-level errors (e;,s) and voxel-level devi-
ations from subjects’ mean coefficient values (e,s) are independent of
(i.e., not correlated with) the sample mean for a given trial, subtracting
out the sample mean leaves these coefficients in the trial-wise activa-
tion patterns. In contexts for which there is only baseline/mean activa-
tion across voxels (Baseline Variability Simulation: voxel-level
variability makes activation patterns more similar section), subtracting
the sample mean for the trial (zs) leaves in the voxel-wise deviations
from subjects' baseline evoked response:

Atvs —Hes = €oys T Crys- (Al)

Because eg,; is repeated across trials, it will appear in the expected
mean centered activation pattern for every t trial within subject s. This
voxel-level variability that is repeated across trials induces positive av-
erage correlations between trials within a subject. Due to this repeated
pattern from the voxel-level deviations, the expected correlation
(E(rin)) between any two trials i and n can be estimated formally by:
c

E(ry,) = Wv (A2)

for cases with normally distributed and uncorrelated voxel-level (eqys)
and trial-level (e.s) deviations. In mixed-modeling, Eq. (A2) is often
used as an estimate of the intra-class correlation coefficient
(Raudenbush and Bryk, 2002).

The principles behind the derivation of Egs. (A1) and (A2) can be ex-
tended straightforwardly to any number of conditioning variables when
the values of the voxel- and trial-level variances (i.e., the 7 matrix) are
known. This leads to greater than zero within-condition correlations
whenever the values of 7 for a condition p are non-zero, and greater
than zero between-condition correlations whenever the conditions
share a common effect repeated across voxels (e.g., baseline evoked
response) that has non-zero variability (e.g., 7o) For example, the inclu-
sion of a single dummy coded “scariness” variable (x = 0 if trial t = not-
scary; x = 1if trial t = scary; Condition Variability Simulation), leads to
expected correlation of Eq. (A2) between two not-scary stimuli (Tyiinr)
and expected correlations of:

2 2
To +Tp

A3
5+ Tp + 07 (A3)

Twithins =

3
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between scary stimuli and between scary and not-scary stimuli,
respectively.

Thus, in practice, as long as there is non-zero voxel-level variability
in baseline evoked response, there tend to be non-zero correlations
between trials. Moreover, these correlations will be further increased
for a given condition if there is non-zero voxel-level variability in the
effect of this conditioning variable. In both cases, these non-zero corre-
lations will remain even when controlling for the effect of mean activa-
tion across voxels.
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